Decision Support Systems for Transportation System Management and Operations (TSM\&O)

FDOT Project BDV29-977-09
Presented by
Mohammed Hadi, Ph.D., PE
Florida International University

February 29, 2015

ITSDCAP Functionality

- Aggregation and cleaning of data from multiple sources
- Grouping and clustering of data
- Performance measurements and dashboard
- Real-time information sharing
- Prediction of system performance and impacts
- Decision support tools
- Benefit-cost analysis of advanced strategies
- Transportation model support

Support of TSM\&O Performance Dashboard

- Estimation of performance measurements including mobility, reliability, safety and environmental impacts
- Agency specific dashboard format
- Broward County
- Miami-Dade County (SW 8 ${ }^{\text {th }}$ Street will be expanded to other corridors)
- Soon Palm Beach County
- Others

Mobility

Reliability

Reliability Utilization in DS on Freeways

Reliability Utilization in DS on Arterials

National Operations Center of Excellence

Safety (Based on CARS, FHP, or Incident Database

Fuel Consumption and Emissions

- EPA MOVES

File Edit Pre Processing Action Post Processing Iools Settings Help	
Description Scale Time Spans Geographic Bounds Vehicles/Equipment Road Type Pollutants And Processes Manage Input Data Sets	Domain/Scale National Use the default national database with default state and local allocation factors. Caution: Do not use this scale setting for SIP or conformity analyses. The allocation factors and other defaults applied at the state or county level have not been verified against specific state or county data and do not meet regulatory requirements for SIPs and conformity determinations. County Select or define a single county that is the entire domain. Note: Use this scale setting for SIP and regional conformity analysis. Use of this scale setting requires user-supplied local data for most activity and fleet inputs. Project Use project domain inputs. Note: Use this scale setting for project-level analysis for conformity, NEPA, or any other regulatory purpose. Use of this scale setting requires user-supplied data at the link level for activity and fleet inputs that describe a particular transportation project.
Strategies Output	Calculation Type Irventory Mass and/or Energy within a region and time span. Emission Rates Mass and/or Energy per unit of activity. MOVESScenariolD:
	Caution: Changing these selections changes the contents of other input panels. These changes may include losing previous data contents. 1 \square III
Stop execution of active RunSpec	

Broward and Palm Beach County Dashboard

Miami-Dade County Dashboard System-Wide

Million Vehicle
Miles (MVM)
Traveled

N/A

Average Hours with

N/A

Estimated Benefits Summary

Performance Measure	Monthly (Dollars)	Year-to-date (Dollars)
Travel Time/Delay Saving N/A	N/A	
Reduction in Emissions	N/A	N/A
Reduction in Fuel	N/A	N/A
Consumption	N/A	N/A
Safety Benefits	N/A	
Reliability Benefits	N/A	N/A
Total Benefits	N/A	

Estimated Cost Summary

Performance Measure	Monthly (Dollars)	Year-to-date (Dollars)
Average Monthly Initial Cost	N/A	N/A
Average Monthly Maintainence Cost	N/A	N/A

	Device Type	Number of Devices
-	Signals	N/A
	Adaptive Signals	N/A
	Adaptive Signals Satisfying Minimum Requirments	N/A
	Wi-Fi Devices	N/A
	Wi-Fi Devices Satisfying Minimum Requirments	N/A
	Maintenance Calls	N/A
	Detection Failures	N/A
	Communication System Percentage of Failure Time fro KIDS	N/A

FDOT District 6 in collaboration with Miami-Dade County started the Adaptive Signal Control Program in 2015 to actively monitor manage, and improve arterial operations along SW 8th Street between 67th and 142nd Avenue. As part of this initiative, FDOT District 6 installed several Adaptive Signal Control and Wi-Fi vehicle detection devices along the corridor to monitor traffic conditions and collect singal adaptively in real-time

Miami-Dade County Dashboard

Corridor-based and Segment-based

Intersection-Level Dashboard

ast

Benefit-Cost Module

- Two types of support
- Provide data to sketch planning tools
- Estimation of benefits based on data (currently only for incident management)
- Incident management benefits
- Originally only for freeways - Now for freeways and arterials

Benefit-Cost Module

Estimation of Construction Impacts

- Two types of support
- Assessment based on real-world data
- Providing the required inputs for external work zone analysis tools (e.g., demand and capacity values at the work zone).

Real-Time Information Sharing

1 i) AB A Intelligent Transportation System Data Capture and Performance Management

Incident Impacts and Index

Estimation of Rain Impacts

- Utilization of HCM procedures for the estimation of travel time with consideration of rain impacts

Scenario	Medium Rain					
		MAPE	RMSE	NRMSE	MSPE	RMSPE
No Prediction	15 min	0.107	13.326	0.132	0.016	0.127
	30 min	0.117	18.668	0.192	0.012	0.108
	45 min	0.111	15.890	0.175	0.010	0.101
	60 min	0.210	43.012	0.391	0.050	0.223
Prediction Using "Normal" Day Demands as Input	15 min	0.096	17.294	0.171	0.010	0.099
	30 min	0.103	23.187	0.239	0.013	0.115
	45 min	0.097	19.867	0.218	0.011	0.104
	60 min	0.219	46.868	0.426	0.050	0.223
Prediction Using Instantaneous Demands as Input	15 min	0.059	12.111	0.125	0.004	0.063
	30 min	0.061	12.561	0.127	0.004	0.063
	45 min	0.043	8.513	0.094	0.002	0.045
	60 min	0.148	34.157	0.311	0.024	0.155
Prediction with Forecasted Demands as Input	15 min	0.048	10.700	0.106	0.003	0.055
	30 min	0.045	8.913	0.098	0.002	0.047
	45 min	0.045	6.087	0.072	0.004	0.061
	60 min	0.088	11.627	0.117	0.008	0.092
	Heavy Rain					
No Prediction	15 min	0.126	17.103	0.244	0.019	0.139
	30 min	0.208	32.016	0.508	0.051	0.227
	45 min	0.121	11.597	0.153	0.009	0.096
	60 min	0.160	21.840	0.240	0.019	0.138
Prediction Using "Normal" Day Demands as Input	15 min	0.116	16.347	0.234	0.014	0.118
	30 min	0.108	16.523	0.262	0.013	0.116
	45 min	0.100	14.874	0.196	0.010	0.100
	60 min	0.146	26.217	0.288	0.022	0.149
Prediction Using Instantaneous Demands as Input	15 min	0.015	2.948	0.042	0.000	0.017
	30 min	0.086	16.895	0.268	0.008	0.092
	45 min	0.028	3.619	0.048	0.001	0.031
	60 min	0.044	10.675	0.117	0.003	0.054
Prediction with Forecasted Demands as Input	15 min	0.015	2.948	0.042	0.000	0.017
	30 min	0.043	7.432	0.118	0.003	0.056
	45 min	0.020	2.658	0.035	0.000	0.021
	60 min	0.036	6.768	0.078	0.001	0.037

Probability of Breakdown for Freeways

Probability of Breakdown on Arterials

*Where, $T=$ Time of Day, $\mathrm{S}_{\text {down }}=$ Downstream Speed, $\mathrm{O}_{\mathrm{up}}=$ Upstream Occupancy, $\mathrm{V}_{\text {up }}=$ Upstream Volume

Ramp Metering Warrants

- On-going effort
- Currently based on simple characteristics including mainline volume, mainline speed, ramp volume, sum of mainline and ramp volume, ramp storage and acceleration distance.
- Researching utilization of dynamic traffic characteristics and measures such as the probability of breakdown, bottleneck attributes, and travel time reliability

CCTV and DMS Location Prioritization

- Incident statistics
- Reliability - travel time index
- Ranking utilizing a utility index

Potential Extensions

- Additional support for:
- ATDM
- ICM
- Multi-modal
- Planning for operations
- Predictive modeling

